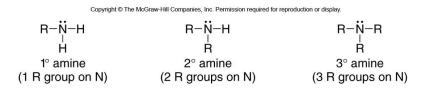
Organic Chemistry, Fourth Edition

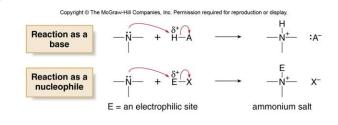
Janice Gorzynski Smith University of Hawai'i


Chapter 25 Lecture Outline

Prepared by Layne A. Morsch The University of Illinois - Springfield

Copyright © 2014 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

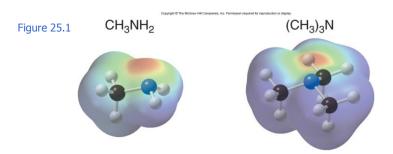
Amine Structure


- Amines are organic nitrogen compounds, formed by replacing one or more hydrogen atoms of ammonia (NH₃) with alkyl or aryl groups.
- Amines are classified as 1°, 2°, or 3° based on the number of alkyl groups bonded to the nitrogen atom.
- Amines are stronger bases and better nucleophiles than other neutral organic compounds.

2

General Amine Reactions

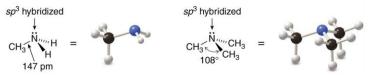
- Like ammonia, the amine nitrogen atom has a nonbonded electron pair, making it both a base and a nucleophile.
- As a result, amines react with electrophiles to form quaternary ammonium salts—compounds with four bonds to nitrogen.

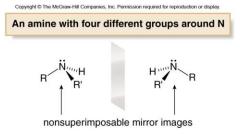

The chemistry of amines is dominated by the nonbonded electron pair on the nitrogen atom.

3

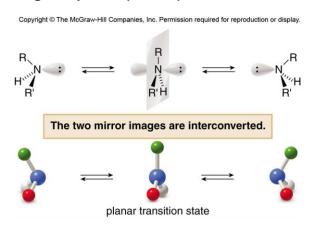
4

Electrostatic Potential Map of Amines


• Both methylamine and trimethylamine clearly show the electron-rich region at the N atom.


3D Structure of Amines

• An amine N atom is *sp*³ hybridized and trigonal pyramidal, with bond angles of approximately 109.5°.



• Since an amine nitrogen has four different groups around it, it is technically a stereogenic center.

Chirality of Amines

• However, the chirality of the amine nitrogen can be ignored because the two enantiomers interconvert by passing through a trigonal planar (achiral) transition state.

Chirality of Ammonium Salts

- In contrast, the chirality of a quaternary ammonium salt with four different groups cannot be ignored.
- Because there is no nonbonded electron pair on the nitrogen atom, interconversion cannot occur, and the N atom is just like a carbon atom with four different groups around it.

 The N atom of an ammonium salt is a stereogenic center when N is surrounded by four different groups.

7

8

Nomenclature of Amines

- 1° Amines are named using either systematic or common names.
- To assign a systematic name, find the longest continuous chain bonded to the amine nitrogen, and change the –e ending of the parent alkane to the suffix –*amine*.
- Then use the usual rules of nomenclature to number the chain and name the substituents.
- To assign a common name, name the alkyl group bonded to the nitrogen atom and add the word amine, forming a single word.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.		
Examples	CH ₃ NH ₂	
	Systematic name: methanamine Common name: methylamine	Systematic name: cyclohexanamine Common name: cyclohexylamine

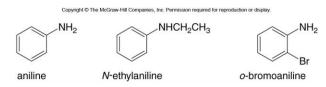
Naming 2° and 3° Amines

· Secondary and tertiary amines having identical alkyl groups are named using the prefix di- or tri- with the name of the primary amine.

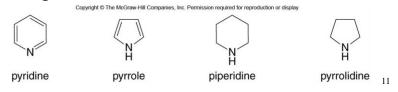
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

triethylamine

$\begin{array}{ccc} \mathsf{CH}_3\mathsf{CH}_2-\ddot{\mathsf{N}}-\mathsf{CH}_2\mathsf{CH}_3 & \mathsf{CH}_3\mathsf{CH}-\ddot{\mathsf{N}}-\mathsf{CHCH}_3 \\ \overset{|}{\mathsf{CH}_2\mathsf{CH}_3} & \mathsf{CH}_3 & \mathsf{CH}_3 \\ \end{array}$ diisopropylamine

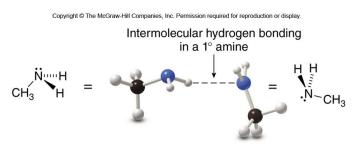

Nomenclature of 2° and 3° Amines

• Secondary and 3° amines having more than one kind of alkyl group are named as *N*-substituted primary amines using the following procedure:

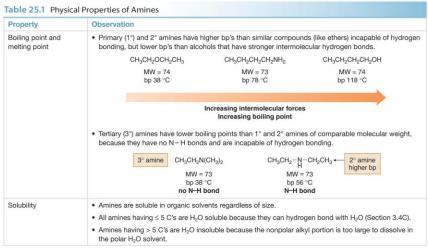

Example	Name the following 2° amine: (CH ₃) ₂ CHNHCH ₃ .
Step [1]	Designate the longest alkyl chain (or largest ring) bonded to the N atom as the parent amine and assign a common or systematic name.
	CH ₃ CH - H - CH ₃ 3 C's in the longest chain+ isopropylamine (common name) 2-propanamine (systematic name)
Step [2]	Name the other groups on the N atom as alkyl groups, alphabetize the names, and put the prefix N- before the name CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ Answer: N-methylisopropylamine (common name) or or N-methyl-2-propanamine (systematic name) one methyl substituent

Aromatic and Heterocyclic Amines

• Aromatic amines are named as derivatives of aniline.

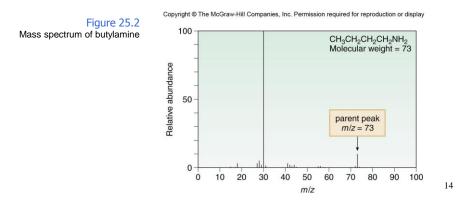


- There are a variety of nitrogen heterocycles, each with a unique name.
- The N atom is considered to be at position "1" in each of these rings.



Intermolecular Forces of Amines

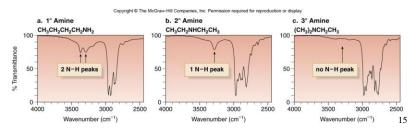
- Amines exhibit dipole-dipole interactions because of the polar C–N and N–H bonds.
- 1° and 2° amines are capable of intermolecular hydrogen bonding because they contain N–H bonds.
- Since nitrogen is less electronegative than oxygen, these hydrogen bonds are weaker than those between O and H.



MW = molecular weight

13

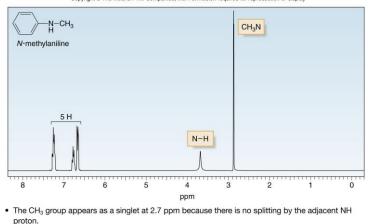
Mass Spectra of Amines


- Amines with an odd number of N atoms give an odd molecular ion in their mass spectra.
- Amines differ from compounds that contain only C, H, and O atoms, which always have a molecular ion with an even mass in their spectra.

IR Spectra of Amines

- Amines with N–H bonds show characteristic absorptions in their IR spectra:
- [1] 1° Amines show two N–H absorptions at 3300–3500 cm⁻¹.
- [2] 2° Amines show one N–H absorption at 3300–3500 cm⁻¹.
- Because 3° amines have no N–H bonds, they do not absorb in this region in their IR spectra.

Figure 25.3 The single bond region of the IR spectra for a 1°, 2°, and 3° amine


NMR Spectra of Amines

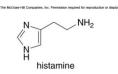
- Amines exhibit the following characteristic ¹H NMR and ¹³C NMR absorptions:
- [1] The N–H signal appears between 0.5 and 5.0 ppm. The exact location depends on the degree of hydrogen bonding and the concentration of the sample.
- [2] The protons on the carbon bonded to the amine nitrogen are deshielded and typically absorb at 2.3–3.0 ppm.
- [3] In the ¹³C NMR spectrum, the carbon bonded to the N atom is deshielded and typically absorbs at 30–50 ppm.
- Like the OH absorption of an alcohol, NH absorption is not split by adjacent protons, nor does it cause splitting of adjacent C–H absorptions in a ¹H NMR spectrum.

¹H NMR Spectrum of N-methylaniline

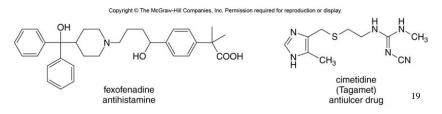
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

• The NH proton appears as a broad singlet at 3.6 ppm.

• The five H atoms of the aromatic ring appear as a complex pattern at 6.6–7.2 ppm.

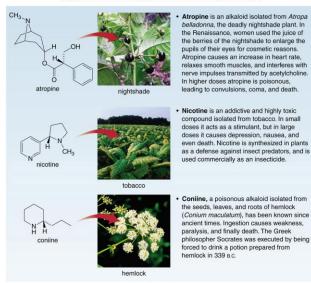

17

Interesting Amines


- Many low molecular weight amines have foul odors.
- Trimethylamine [(CH₃)₃N], formed when enzymes break down certain fish proteins, has the characteristic odor of rotting fish.
- Putrescine $(NH_2CH_2CH_2CH_2CH_2NH_2)$ and cadaverine $(NH_2CH_2CH_2CH_2CH_2CH_2NH_2)$ are also products of decay with putrid odors.

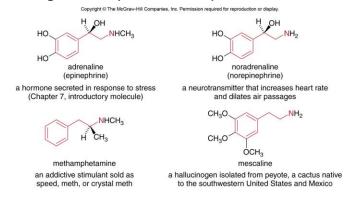
Histamine and Antihistamines

 Histamine, a rather simple triamine that is present in many tissues, is responsible for a wide variety of physiological effects.

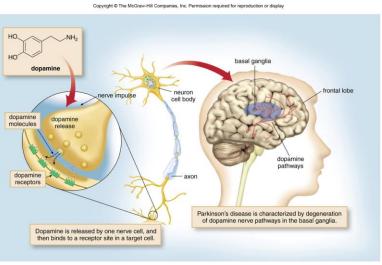

- It is a vasodilator and is also responsible for symptoms of allergies.
- Understanding the physiological properties of histamine has helped chemists design drugs to counteract some of its undesirable effects.
- Antihistamines bind to the same active site as histamine in the cell, but they evoke a different response.

Common Alkaloids

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

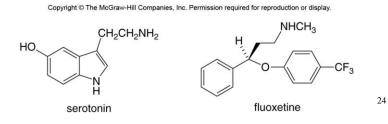


(nightshade): © Werner Arnold; (tobacco): © Creatas Images RF (hemlock): © Steven P. Lynch;


Derivatives of 2-Phenylethylamine

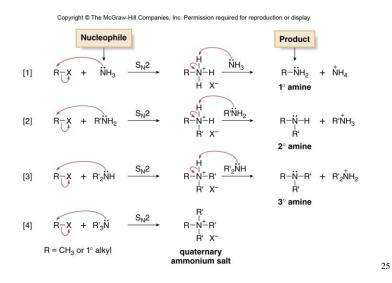
- A large number of physiologically active compounds are derived from 2-phenylethylamine (C₆H₅CH₂CH₂NH₂).
- These compounds include adrenaline, noradrenaline, methamphetamine, and mescaline.
- Each contains a benzene ring bonded to a two-carbon unit with a nitrogen atom (shown in red).

Dopamine—A Neurotransmitter

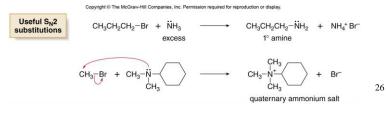

Dopamine Affecting Drugs

- Cocaine, amphetamines, and several other addicting drugs increase the level of dopamine in the brain, which results in a pleasurable "high."
- With time, the brain adapts to increased dopamine levels, so more drug is required to produce the same sensation.

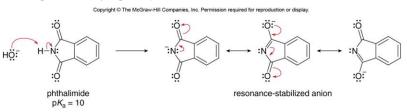
23


AntiDepressants

- Serotonin is a neurotransmitter that plays an important role in mood, sleep, perception, and temperature regulation.
- A deficiency of serotonin causes depression.
- The most widely used antidepressants are selective serotonin reuptake inhibitors (SSRIs).
- These drugs act by inhibiting the reuptake of serotonin by the neurons that produce it, increasing its available concentration.
- Fluoxetine (trade name Prozac) works in this way.

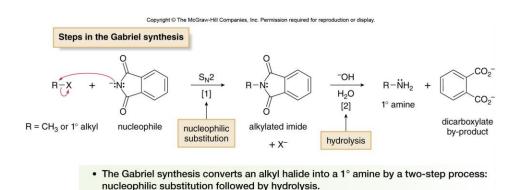

Preparation of Amines

• Amines can be prepared by direct nucleophilic substitution.

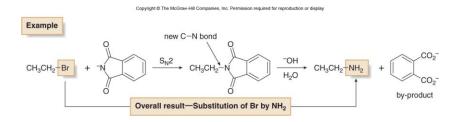

Limitations of Direct Substitution

- Although the process seems straightforward, polyalkylation of the nitrogen nucleophile limits its usefulness.
- Any amine formed by nucleophilic substitution still has a nonbonded electron pair, making it a nucleophile as well.
- It will react with remaining alkyl halide to form a more substituted amine, resulting in a mixture of 1°, 2°, and 3° amine products.
- Consequently, the reaction is most useful in preparing 1° amines by using a large excess of NH₃, and for preparing quaternary ammonium salts by alkylating any nitrogen nucleophile with one or more equivalents of alkyl halide.

Gabriel Synthesis of 1° Amines

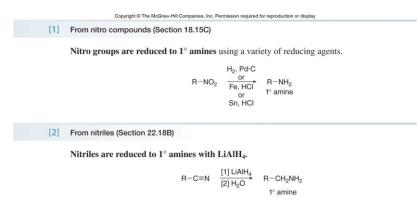

- The Gabriel synthesis is comprised of two steps and uses a nucleophile derived from pthalimide to synthesize 1° amines via nucleophilic substitution.
- The N–H bond of a pthalimide is especially acidic because the resulting anion is resonance stabilized by the two flanking carbonyl groups.

• An acid-base reaction forms a nucleophilic anion that can react with an unhindered alkyl halide in an S_N^2 reaction to form a substituted product.

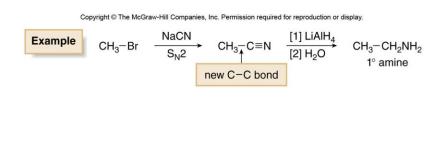

27

Steps in the Gabriel Synthesis

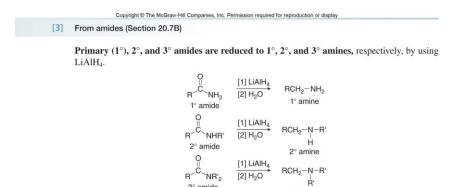
Example of the Gabriel Synthesis


• The alkylated imide is formed, then hydrolyzed with aqueous base to give a 1° amine and a dicarboxylate.

29


Reduction of Nitro and Nitrile Groups

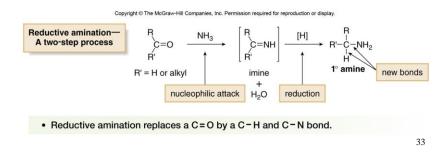
• Amines can be prepared by reduction of nitro compounds, nitriles, and amides.


Two-Step Synthesis of Amines Using Nitriles

• Because the cyano group is readily introduced by $S_N 2$ substitution of alkyl halides with ⁻CN, this provides a twostep method to convert an alkyl halide to a 1° amine with one more carbon atom.

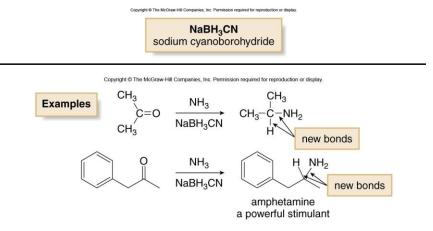
31

Reduction of Amides

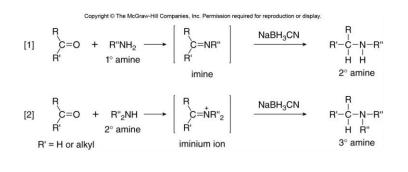


3° amine

3° amide

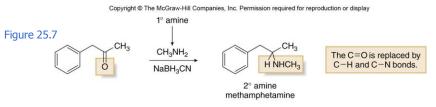

Reductive Amination

- Reductive amination is a two-step method that converts aldehydes and ketones into 1°, 2°, and 3° amines.
- There are two distinct steps to this reaction.
- [1] Nucleophilic attack of NH₃ on the carbonyl group forms an imine.
- [2] Reduction of the imine forms an amine.


Reductive Amination

 The most effective reducing agent for this reaction is sodium cyanoborohydride (NaBH₃CN).

2° and 3° Amines Via Reductive Amination

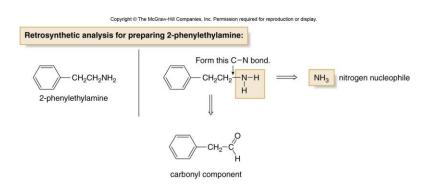

• With a 1° or 2° amine as starting material, reductive amination is used to prepare 2° and 3° amines, respectively.

35

Synthesis of Methamphetamine by Reductive Amination

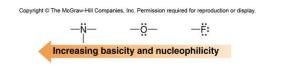
- In reductive amination process, one of the H atoms bonded to N is replaced by an alkyl group.
- Thus, methylamine (a 1° amine) reacts with phenylacetone by reductive amination to produce methamphetamine (a 2° amine).

In reductive amination, one of the H atoms bonded to N is replaced by an alkyl group. As a result, a 1° amine is converted to a 2° amine and a 2° amine is converted to a 3° amine. In this reaction, CH₃NH₂ (a 1° amine) is converted to methamphetamine (a 2° amine).


Reductive Amination in Synthesis

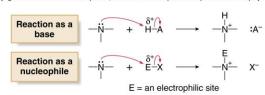
- To use reductive amination in synthesis, you must be able to determine what aldehyde or ketone and nitrogen compound are needed to prepare a given amine—that is, you must work backwards in the retrosynthetic direction.
- Keep in mind the following two points:

Copyrig	ht © The McGraw-Hill Companies, Inc. F	Permission required for reproduction or display.
	on N comes from the of the molecule comes	carbonyl compound. from NH_3 or an amine.
	Product of reductive amination	Two components needed
	— <u>N</u> — = — <u>C</u> -H =	$ \begin{array}{c} \longrightarrow & -N \longrightarrow \text{ amine or } NH_3 \\ \longrightarrow & \searrow \\ c=0 \\ \text{aldehyde or ketone} \end{array} $


Synthesis of a 1° Amine

• For a 1° amine, the nitrogen component must be NH₃.

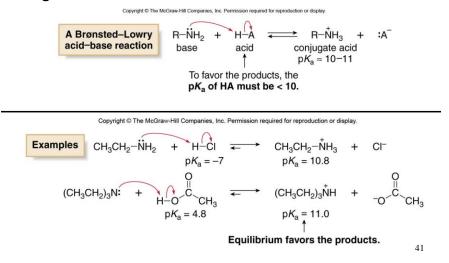
General Reactivity of Amines


- The chemistry of amines is dominated by the lone pair of electrons on nitrogen.
- Only three elements in the second row of the periodic table have nonbonded electron pairs in neutral organic compounds: nitrogen, oxygen, and fluorine.
- Because basicity and nucleophilicity decrease across a row, nitrogen is the most basic and the most nucleophilic.

• Amines are stronger bases and nucleophiles than other neutral organic compounds.

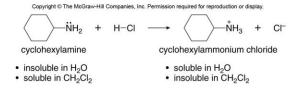
39

Amines React as Bases or Nucleophiles

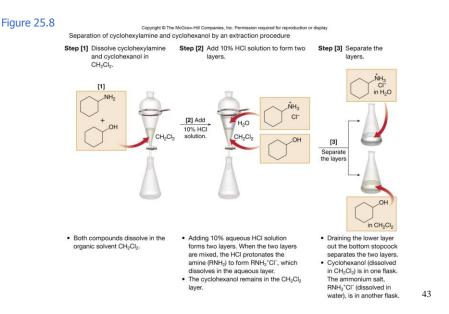

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Amines react as bases with compounds that contain acidic protons.

· Amines react as nucleophiles with compounds that contain electrophilic carbons.

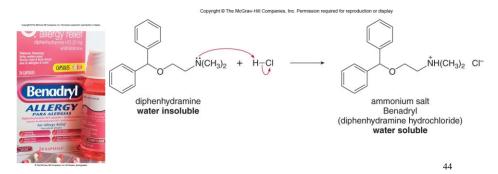

Amines as Bases

• Amines react as bases with a variety of organic and inorganic acids.

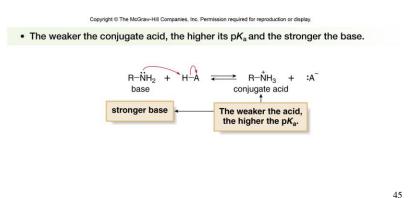


Extraction of Amines

- Because amines are protonated by aqueous acid, they can be separated from other organic compounds by extraction using a separatory funnel.
- When an amine is protonated by aqueous acid, it forms an ammonium salt.


- Since this salt is ionic, it is water soluble, but insoluble in organic solvents.
- A similar acid–base reaction does not occur with other organic compounds like alcohols, which are much less basic.

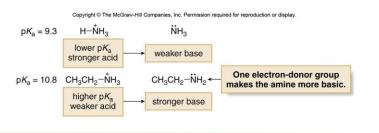
Separation of Amines and Alcohols


Water Soluble Ammonium Salts

- Many water-insoluble amines with useful medicinal properties are sold as their ammonium salts.
- These are more easily transported through the body in the aqueous medium of the blood.
- Benadryl is an over-the-counter antihistamine that is used to relieve the itch and irritation of skin rashes and hives.

Basicity of Amines

- The relative acidity of different compounds can be compared using their p*K*_a values.
- The relative basicity of different compounds (such as amines) can be compared using the pK_a values of their conjugate acids.

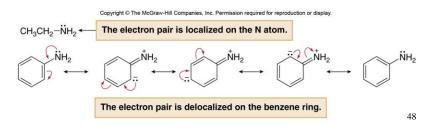


Comparing Basicity of Amines

- Any factor that increases the electron density on the N atom increases the amine's basicity.
- Any factor that decreases the electron density on N decreases an amine's basicity.
- Because alkyl groups are electron-donating, they increase the electron density on nitrogen, which makes an amine like CH₃CH₂NH₂ more basic than NH₃.

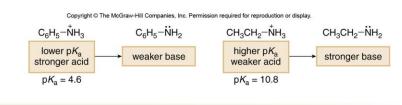
Comparing Basicity of Amines, continued

Thus, the pK_a of CH₃CH₂NH₃⁺ is higher than the pK_a of NH₄⁺, so CH₃CH₂NH₂ is a stronger base than NH₃.



 Primary (1°), 2°, and 3° alkylamines are more basic than NH₃ because of the electrondonating inductive effect of the R groups.

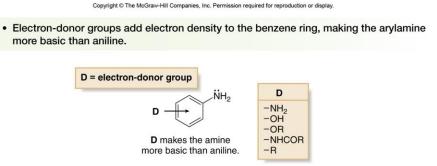
47


Basicity of Aryl and Alkyl Amines

- To compare an alkylamine and an arylamine, we must look at the availability of the nonbonded electron pair on N.
- With $CH_3CH_2NH_2$ for example, the electron pair is localized on the N atom.
- With an arylamine, the electron pair is delocalized on the benzene ring via resonance.
- This decreases the electron density on N, and makes an amine like C₆H₅NH₂ less basic than CH₃CH₂NH₂.

Basicity of Aryl and Alkyl Amines

- pK_a Values support this reasoning.
- Since the pK_a of $CH_3CH_2NH_3^+$ is higher than the pK_a of $C_6H_5NH_3^+$, $CH_3CH_2NH_2$ is a stronger base than $C_6H_5NH_2$.



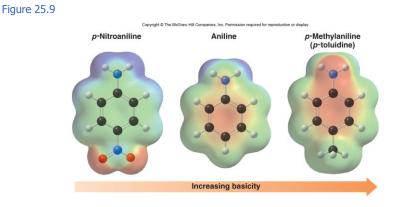
 Arylamines are less basic than alkylamines because the electron pair on N is delocalized.

49

Basicity of Substituted Aryl Amines

 Substituted anilines are more basic or less basic than aniline depending on the nature of the substituent.

Basicity of Substituted Aryl Amines


• Whether a substituent donates or withdraws electron density depends on the balance of its inductive and resonance effects.

Copyright © The McGraw-Hill Companies, Inc. Permission required	d for reproduction or display.	
• Electron-withdrawing groups remove electron dens the arylamine less basic than aniline.	ity from the benze	ne ring, making
W = electron-withdrawing group		
× NH2	w	
w +	-X -CN -CHO -SO ₃ H	
W makes the amine less basic than aniline.	-COR -COOR -NO ₂ -COOH -NR ₂ ⁺	
	coon mig	

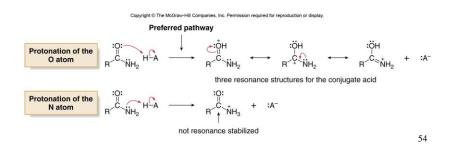
51

Electrostatic Potential Plot of Anilines

• The amine group gets more electron rich as the para substituent changes from nitro to hydrogen to methyl.

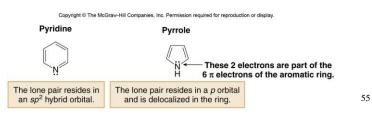
Weaker Basicity of Amides

- To compare the basicity of an alkylamine and an amide, we must once again compare the availability of the nonbonded electron pair on nitrogen.
- With RNH₂, the electron pair is localized on the N atom.
- With an amide, however, the electron pair is delocalized on the carbonyl oxygen by resonance.
- This decreases the electron density on N, accounting for its much lower basicity than an alkylamine.

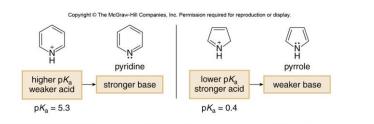

The electron pair on N is delocalized on O by resonance.

Amides are much less basic than amines because the electron pair on N is delocalized.

53

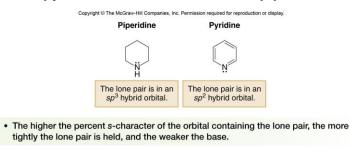

Amide Basicity Resembles Other Carbonyl Compounds

- When an amide is treated with acid, protonation occurs at the carbonyl oxygen, not the nitrogen, because the resulting cation is resonance stabilized.
- The product of protonation on the NH_2 group cannot be resonance stabilized.
- Thus, protonation on oxygen is the preferred pathway.

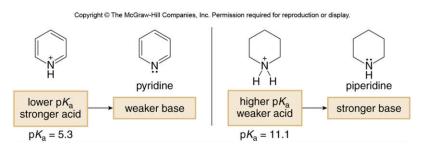

Basicity of Heterocyclic Amines

- To determine the relative basicity of nitrogen heterocycles that are also aromatic, you must know whether the nitrogen lone pair is part of the aromatic π system.
- Both pyridine and pyrrole are aromatic, but the nonbonded electron pair on the N atom in these compounds is located in different orbitals.
- The lone pair in pyridine occupies an sp^2 hybridized orbital, whereas that of pyrrole resides in a p orbital, making it part of the delocalized aromatic system.
- Thus, pyrrole is a much weaker base than pyridine.

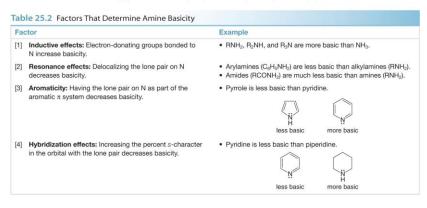
Basicity of Heterocyclic Amines


• As a result, the pK_a of the conjugate acid of pyrrole is much less than that for the conjugate acid of pyridine.

• Pyrrole is much less basic than pyridine because its lone pair of electrons is part of the aromatic π system.


Basicity of Heterocyclic Amines—Hybridization

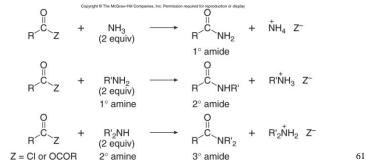
- The hybridization of the orbital that contains an amine's lone pair also affects its basicity.
- The lone pair on pyridine is not part of the delocalized π system, but occupies an *sp*² orbital.
- These electrons are held more tightly than the *sp*³ piperidine electrons.
- Therefore, pyridine is a weaker base than piperidine.



Basicity of Heterocyclic Amines—Hybridization

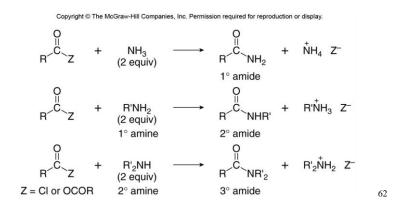
• The lower basicity of pyridine is reflected in the pK_a value of its conjugate acid which is much lower than that for the conjugate acid of piperidine.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

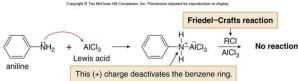

59

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

	Compound	pK _a of the conjugate acid	Comment	
Ammonia	NH ₃	9.3		
Alkylamines	NH	11,1		
	(CH ₃ CH ₂) ₂ NH	11.1	Alkylamines have pK_a values of ~10-11.	
	(CH ₃ CH ₂) ₃ N	11.0		
	CH ₃ CH ₂ NH ₂	10.8		
Arylamines	p-CH ₃ OC ₆ H ₄ NH ₂	5.3		
	p-CH ₃ C ₆ H ₄ NH ₂	5.1	The pK_a decreases as the	
	C ₆ H ₅ NH ₂	4.6	electron density of the benzene ring <i>decreases</i> .	
	p-NO ₂ C ₆ H ₄ NH ₂	1.0		
Heterocyclic aromatic amines	N	5.3	The pK_a depends on whether the	
			lone pair on N is localized or delocalized.	
	NH	0.4		
Amides	RCONH ₂	-1		


Reaction of Amines with Aldehydes and Ketones

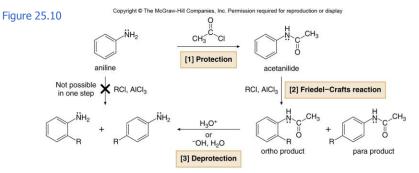
- Reaction of 1° and 2° amines with aldehydes and ketones (Sections 21.11-21.12).
- · Aldehydes and ketones react with 1° amines to form imines.
- They react with 2° amines to form enamines.
- Both reactions involve nucleophilic addition of the amine to the carbonyl group to form a carbinolamine, which then loses water to form the final product.


Reaction of Amines with Acid Derivatives

- Reaction of NH₃ and 1° and 2° amines with acid chlorides and anhydrides (Sections 22.8-22.9).
- NH₃, 1° and 2° amines react with acid chlorides and anhydrides to form 1°, 2° and 3° amides, respectively.

Synthesis of Substituted Anilines

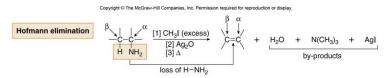
- The conversion of amines to amides is useful in the synthesis of substituted anilines.
- Aniline itself does not undergo Friedel–Crafts reactions because the lone pair on N reacts with the Lewis acid $(AICI_3)$ to form a deactivated complex that does not undergo further reaction.

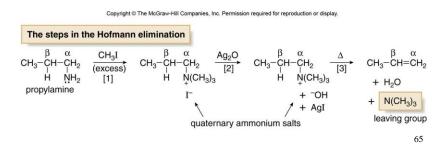


 The N atom of an amide, however, is much less basic than in an amine, so it does not undergo a similar Lewis acid–base reaction with AICI₃.

63

Amides as Protecting Groups

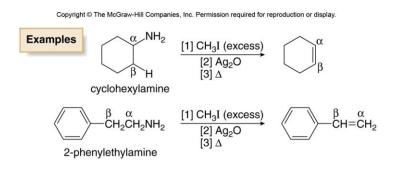

 Thus, a three-step reaction sequence involving an intermediate amide can be used to form the products of the Friedel–Crafts reaction.


- A three-step sequence uses an amide as a protecting group.
- [1] Treatment of aniline with acetyl chloride (CH₃COCI) forms an amide (acetanilide).
- [2] Acetanilide, having a much less basic N atom compared to aniline, undergoes electrophilic aromatic substitution under Friedel–Crafts conditions, forming a mixture of ortho and para products.
- [3] Hydrolysis of the amide forms the Friedel-Crafts substitution products.

Hofmann Elimination

• The Hofmann elimination converts an amine into an alkene.

• The Hofmann elimination consists of three steps, as shown for the conversion of propylamine to propene.


Hofmann Elimination

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Mechanism 25.1 The E2 Mechanism for the Hofmann Elimination $\begin{array}{c} H & \stackrel{\frown}{\longrightarrow} & \stackrel$

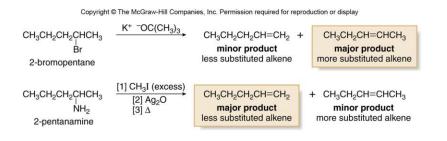
- To help remember the reagents needed for the steps of the Hofmann elimination, keep in mind what happens in each step.
 - Step [1] makes a good leaving group by forming a quaternary ammonium salt.
 - Step [2] provides the strong base, ⁻OH, needed for elimination.
 - Step [3] is the E2 elimination that forms the new π bond.

Hofmann Elimination


• All Hofmann elimination reactions result in the formation of a new π bond between the α and β carbon atoms, as shown for cyclohexylamine and 2-phenylethylamine.

67

Hofmann Elimination vs. Other E2 Eliminations

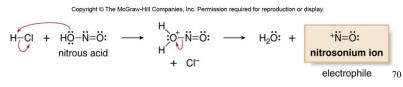

• One major difference between the Hofmann elimination and other E2 eliminations: when constitutional isomers are possible, the major alkene has the less-substituted double bond.

- This result is explained by the size of the leaving group.
- The base removes a proton from the less substituted, more accessible β carbon atom, because of the size of the bulky leaving group on the nearby α carbon.

Comparison of E2 Elimination Reactions

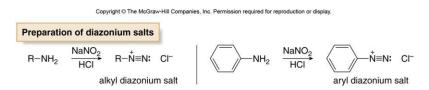
Figure 25.11

69


Reaction of Amines with Nitrous Acid

• Nitrous acid, HNO₂, is a weak unstable acid formed from NaNO₂ and a strong acid like HCI.

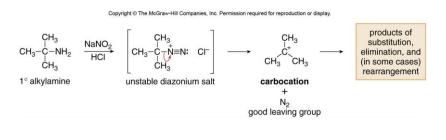
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



- In the presence of acid, nitrous acid decomposes to *NO, the nitrosonium ion.
- This electrophile then goes on to react with the nucleophilic nitrogen atom of amines to form diazonium salts (RN₂+Cl⁻) from 1° amines and N-nitrosamines (R₂NN=O) from 2° amines.

Diazotization

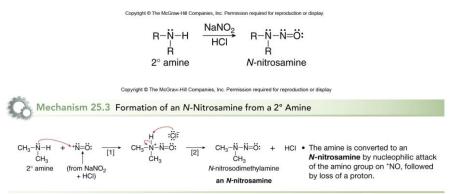
- Nitrous acid reacts with 1° alkylamines and arylamines to form diazonium salts.
- This reaction is called diazotization.



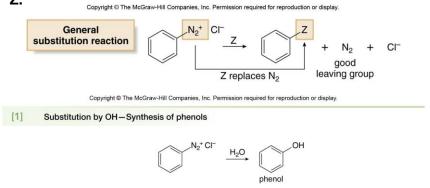
- The mechanism for this reaction begins with nucleophilic attack by the amine on the nitrosonium ion.
- It can conceptually be divided into two parts: formation of an N-nitrosamine, followed by loss of H₂O.

	Copyright C The McGraw-Hill Companies, Inc. Permission required for re	eproduction or display
Mechanism 25.2	Formation of a Diazonium Salt from a 1° A	mine
Part [1] Formation of an N-nitro	osamine	
$R-\dot{N}H_2$ + $\dot{N}=\ddot{O}$: [1] (from NaNO ₂ + HCl)	$\begin{array}{c} H \xrightarrow{: \dot{C} \dot{C} \dot{C} \dot{C} \dot{C} \dot{C} \dot{C} \dot{C}$	 In Part [1], the amine is converted to an <i>N</i>-nitrosamine by nucleophilic attack of the amino group on *NO, followed by loss of a proton.
Part [2] Loss of H ₂ O to form the $R-\dot{N}-\ddot{N}=\ddot{O}$: + H-Cl [3] <i>H</i> <i>N</i> -nitrosamine H ₂	e diazonium salt → R-Ň-Ň-Ö+H (4) R-Ň=Ň-ŎH H-Ći ;ĊiF [5] či + R-Ň=N: (6] R-Ň=Ň [©] ŎH ₂ + :ĊiF	 In Part [2], three proton transfer reactions lead to loss of H₂O in Step [6] and formation of the diazonium ion.

Alkyl Diazonium Salts

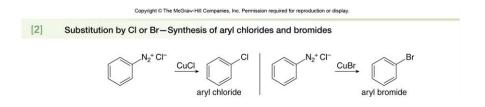

- Alkyl diazonium salts are generally not useful compounds.
- They readily decompose below room temperature and form carbocations with loss of N₂, a very good leaving group.
- These carbocations usually form a complex mixture of substitution, elimination and rearrangement products.

73


Formation of N-Nitrosamines

• 2° Alkylamines and aryl amines react with nitrous acid to form *N*-nitrosamines.

Substitution Reactions of Aryl Diazonium Salts


- Aryl diazonium salts react with a variety of reagents to form products in which Z (an atom or group of atoms) replaces N₂, a very good leaving group.
- The mechanism of these reactions varies with the identity of Z.

• A diazonium salt reacts with water to form a phenol. 75

Sandmeyer Reactions of Diazonium Salts

- A diazonium salt reacts with copper(I) chloride or copper(I) bromide to form an aryl chloride or aryl bromide.
- This is called the Sandmeyer reaction.
- It provides an alternative to direct chlorination and bromination of the aromatic ring using Cl_2 or Br_2 and a Lewis acid catalyst.

Synthesis of Aryl Fluorides and lodides

• A diazonium salt reacts with fluoroboric acid to form an aryl fluoride.

	Copyright © The McGraw-Hil Companies, Inc. Permission required for reproduction or display.
[3]	Substitution by F-Synthesis of aryl fluorides
	$\bigcup^{N_2^+ C \Gamma} \xrightarrow{HBF_4} \bigcup^{F}$
	aryl fluoride

• A diazonium salt reacts with sodium or potassium iodide to form an aryl iodide.

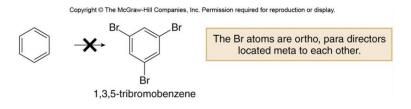
	Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
[4]	Substitution by I-Synthesis of aryl iodides
	N2 ⁺ Cl ⁻ Nal or KI and lockide

• These are useful reactions because aryl fluorides and iodides cannot be produced by direct halogenation with F_2 or I_2 and a Lewis acid catalyst.

Synthesis of Benzonitriles

- A diazonium salt reacts with copper(I) cyanide to form benzonitrile.
- Since the cyano group can be converted into a variety of other functional groups, this reaction provides easy access to a wide variety of benzene derivatives.

	Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
[5]	Substitution by CN-Synthesis of benzonitriles
	$\bigcup_{k=1}^{N_2^+ Cl^-} \underbrace{CuCN}_{\text{benzonitrile}} CN$


Substitution by Hydrogen

- A diazonium salt reacts with hypophosphorus acid to form benzene.
- This reaction is useful in synthesizing compounds that have substitution patterns that are not available by other means.

[6]	Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Substitution by H-Synthesis of benzene
	$\bigcup_{k=1}^{N_2^+ C\Gamma} \xrightarrow{H_3 PO_2} \bigcup_{k=1}^{H_3 PO_2} H$

Practical Use of Substitution with Hydrogen

- The synthesis of 1,3,5-tribromobenzene is an example of the usefulness of hydrogen substitution.
- Br is an ortho, para director, bromination with Br₂ and FeBr₃ will not add Br substituents meta to each other on the ring.
- It is not possible to synthesize 1,3,5-tribromobenzene from benzene by direct bromination.


Synthesis of 1,3,5-Tribromobenzene

- It is possible, however, to add three Br atoms meta to each other when aniline is the starting material.
- Because an NH₂ group is a very powerful o,p director, three Br atoms are introduced in a single step on halogenation.
- Then, the NH₂ group can be removed by diazotization and reaction with H₃PO₂.

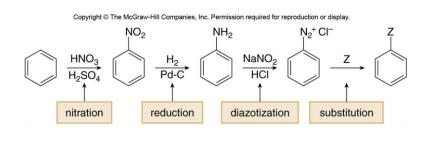
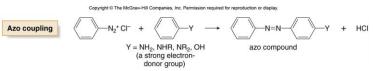
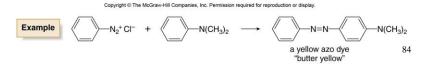

Synthesis of 1,3,5-Tribromobenzene

Figure 25.12

Synthesis Using the Four-Step Diazo Sequence

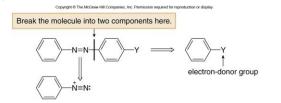

- Diazonium salts provide easy access to many different benzene derivatives.
- Keep in mind the following four-step sequence, because it will be used to synthesize many substituted benzenes.


83

Coupling Reactions of Aryl Diazonium Salts

• When a diazonium salt is treated with an aromatic compound that contains a strong electron-donor group, the two rings join together to form an azo compound, a compound with a nitrogen–nitrogen double bond.

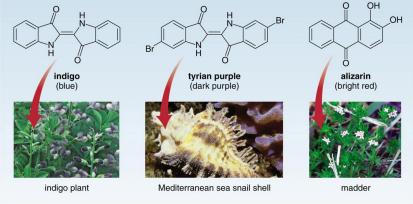
- Azo compounds are highly conjugated, rendering them colored.
- · Many of these compounds are synthetic dyes.
- Butter yellow was once used to color margarine.


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Mechanism 25.4 Azo Coupling Step [1] Addition of the diazonium ion to form a carbocation Step [1] The electrophilic diazonium ion -N=N N≡N: reacts with the electron-rich benzene ring to form a resonance-stabilized (+ three additional resonance structures) carbocation. (Only one resonance resonance-stabilized carbocation structure is drawn.) Step [2] Loss of a proton to re-form the aromatic ring Step [2] Loss of a proton regenerates N=N-HCI the aromatic ring. :01:

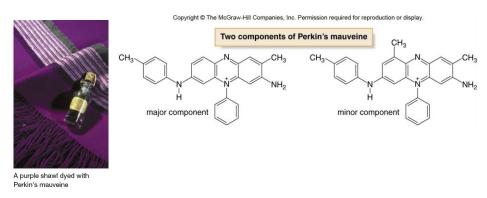
85

Synthesis of Azo Compounds


- Because a diazonium salt is only weakly electrophilic, the reaction only occurs when the benzene ring has a strong electron donor group, such as NH₂, NHR, NR₂, or OH.
- Although these groups activate both the ortho and para positions, para substitution occurs unless that position already has another substituent.
- To determine what starting materials are needed to synthesize a particular azo compound, always divide the molecule into two components: one has a benzene ring with a diazonium ion, and one has a benzene ring with a very strong electron donor group.

Natural and Synthetic Dyes

• Three natural dyes known for centuries are indigo, tyrian purple, and alizarin.

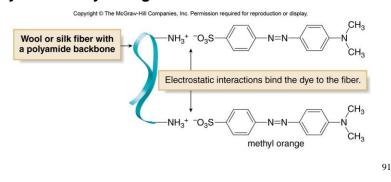

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

(indigo plant): © Kirsten Soderlind/Corbis; (shell): ◎ SuperStock; (madder): © Paul Redearri/Ozarks, Regional Herbariun/Southwest Missouri State University

Natural and Synthetic Dyes

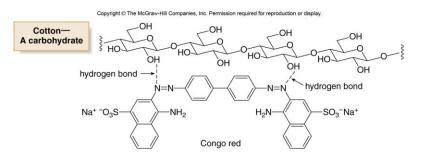
• In 1856, William Henry Perkin synthesized mauveine, a mixture of two compounds that differ only in the presence of one methyl group on one of the aromatic rings.

• Many common synthetic dyes such as alizarine yellow R, para red, and Congo red are azo compounds.

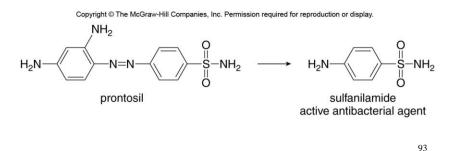

89

Natural and Synthetic Dyes

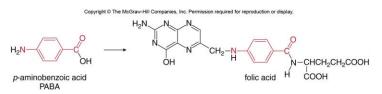
- To be classified as a dye, a compound must be colored and it must bind to fabric.
- Compounds that bind to fabric by some type of attractive force are called direct dyes.
- The attractive forces may be electrostatic interactions, van der Waals forces, hydrogen bonding, and sometimes even covalent bonding.
- The type of interaction depends on the structure of the dye and the fiber.
- A compound that may be good for dying wool or silk, both polyamides, may be poor for dying cotton, a carbohydrate.


Dyes for Wool and Silk

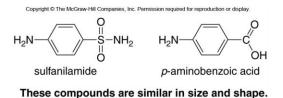
- Wool and silk contain charged functional groups, such as $\rm NH_{3^{+}}$ and $\rm COO^{-}.$
- Thus, they bind to ionic dyes by electrostatic interactions.
- Positively charged NH₃⁺ groups bonded to the protein backbone are electrostatically attracted to anionic groups in a dye like methyl orange.


Dyes for Cotton—Congo Red

- Cotton, on the other hand, binds dyes by hydrogen bonding interactions with its many OH groups.
- Thus, Congo red is bound to the cellulose backbone by hydrogen bonds.

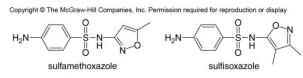

Sulfa Drugs

- In 1935, Gerhard Domagk first used a synthetic dye, prontosil, to kill bacteria.
- Prontosil and other sulfur containing antibiotics are collectively known as sulfa drugs.
- Prontosil is not the active ingredient itself—in cells, it is metabolized to sulfanilamide, the active drug.



Sulfanilamide as an Antimicrobial Agent

• To understand how sulfanilamide functions as an antibacterial agent, we must examine folic acid, which microorganisms synthesize from *p*-aminobenzoic acid.


• Sulfanilamide and *p*-aminobenzoic acid are similar in size and shape and have related functional groups.

Sulfanilamide

- When sulfanilamide is administered, bacteria attempt to use it in place of *p*-aminobenzoic acid to synthesize folic acid.
- Derailing folic acid synthesis means that the bacteria cannot grow and reproduce.
- Sulfanilamide only affects bacterial cells, because humans do not synthesize folic acid, and must obtain it from their diets.

Figure 25.13 Two common sulfa drugs

• Sulfamethoxazole is the sulfa drug in Bactrim, and sulfisoxazole is sold as Gantrisin. Both drugs are commonly used in the treatment of ear and urinary tract infections.